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An exact pulse for the parametrically forced nonlinear Sdimger equatiofNLS) is isolated. The equation
governs wave envelope propagation in dispersion-managed fiber lines with positive residual dispersion. The
pulse is obtained as a ground state of an averaged variational principle associated with the equation governing
pulse dynamics. The solutions of the averaged and original equations are shown to stay close for a sufficiently
long time. A properly adjusted pulse will therefore exhibit nearly periodic behavior in the time interval of
validity of the averaging procedure. Furthermore, we show that periodic variation of dispersion can stabilize
spatial solitons in a Kerr medium and one-dimensional solitons in the NLS with quintic nonlinearity. The
results are confirmed by numerical simulations.

PACS numbds): 42.65.Tg, 05.45.Yv

[. INTRODUCTION the reduction of the efficiency of phase matching. The prac-
tical achievements of this approach have stimulated further
Recent technological advances in material science havetudy of nonlinear dynamics in media with varying coeffi-
afforded considerable freedom in the design of optical matecients.
rials. In particular, an optical medium can be designed to In spite of the practical advances in the realization of such
have variable group velocity dispersion, nonlinearity, andsystems, some basic features of a DM signal are not fully
different scales by using appropriate manufacturing proity of the DM soliton in one important special cagmositive
cesses. It is especially convenient to produce materialsrﬁs'dual dispersionIn the case of vanishing residual disper-

systems having physical parameters varying periodically, a3'°": W€ verify some nontrivial conditions for stability, one
y g pry P ying p Y of which is the boundedness from below of the Hamiltonian

this amounts to a repetitive manufacturing process. The eV%unctional It turns out to be bounded entirely due to a subtle
lution equations guiding the propagation of electromagnet smoothing effect resulting from the variable dispersion pa-

pulsle?(or thewfenvelo;:r?sm .S‘udc.h ﬁystemg are ”?f'f"'.”e‘t” rameter. Indeed, the large rapid variation of dispersion makes
evolution equations with periodically varying COECIents. y,q pulse undergo rapid oscillations, which smooth out the

Although such systems are frequenFIy encountered .in app”f)eaks that could cause instability.
cations, there are few general techniques for analyzing pulse Having understood and properly formulated this effect,

dynamics in parametrically forced systems. which one might call dispersive smoothing, we then show

the field of fiber-optic communication, namely, in the so-ground states can be created.

called dispersion-manage(®M) optical data transmission
that was proposed in 198®@]. The simplest optical-pulse
equalizing system consists of a transmission fiber and an
equalizer fiber with the opposite dispersion. The periodic in-
corporation of a compensating fiber redu¢es even elimi-
nate$ the total dispersion of the fiber spans. In the linear We start from the wave envelope equation, derived from
regime, the compensation of dispersion aims to prevent dighe Maxwell equations, guiding the propagation of electro-
persive broadening of the pulse. In the nonlinear regime, amagnetic pulses in optical fibers. We show that the averaged
additional advantage is that the impact of four-wave mixingequation possesses a ground state minimizing an averaged
on a signal transmission is substantially suppressed due tction functional. The corresponding solutions of the original
equation are constructed from this ground state and turn out
to be nearly periodic for sufficiently long timdsvhile the
*Present address: Mathematical Sciences Research, Lucent Te@wveraging procedure remains valid
nologies, 600 Mountain Ave., 2C-359, Murray Hill, NJ 07974. After nondimensionalizing and rescaling in the strong dis-

Il. DISPERSION-MANAGED SOLITON AS A GROUND
STATE OF THE AVERAGED VARIATIONAL
PRINCIPLE
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persion management regime the wave envelope propagatidor 0<z<Ce -. Establishing these estimates requires a

equation takes the forrgsee, e.g.[3]) careful study of the averaging procedure develope5in
) 5 and by one of the authors [B]. The details of the averaging
iu+d(2)u,+e(|ulu+au,,) =0, procedure will appear elsewhelrg].

Below we show that the averaged equation possesses a
family of ground state solutions, which together with the
averaging result verify the existence of nearly periodic,

whereu is the complex amplitude of the electric fields the
propagation distance; is the retarded timed(z+1)=d(2)
is the mean-zero component of the group velocity dispersiorgt‘,ﬂble pulses.
and e(d) is the residual dispersion. Thesmallness of the It is easy to see that Eq2) is also phase invariant and
mean dispersion corresponds to the so-called nonweak difiarefore has a conserved quantity
persion management regime. We first derive the slowly vary-
ing Hamiltonian and introduce the averaged Hamiltorjién Foo

The above equation possesses a Hamiltonian functional P(U)ZJ’ lv|?dr.
similar to that of the nonlinear Schiimger equatior{NLS) *°°

[4]

Introducing another useful functional corresponding to a

+oo 1 Sobolev norm,
H:j d(2)|u,)?+ € a|uT|2——|u|4> dr.
o 2 +oo av|?
. o . G(v)zJ lof?+|— |d,
Solving the unperturbed equatidwith e=0), we obtain —o aT
u(r,z2)=T(2)u(,0), whereT(z) is the fundamental solution
operator ofiu,+d(z)u,.=0. we consider the constrained minimization problem
The family of unitary operatorsl(z) is periodic T(z _

+1)=T(2) since(d(z))=0. Using the solution of the linear Py\=inf{E(v)=(H)(v),G(v)<*,P(v) =A}.

system according to the method of variation of constants, we . ) . )

introduce a canonical transformatiar(z,7)=T(2)v(z,7). If there is gsolunon of th.|s problem(x) then it corresponds

The new Hamiltonian takes the form to a standing wave solution of the full averaged equatin
Although P, is bounded from belowas we will show latel,

+o0 1 it does not guarantee the presence of a minimizer as simple
H:L‘f (a|UT|2_§|T(Z)U|4)dT examples show. Therefore, folowing the standard approach,
o we construct a minimizing sequence that converges to a
with the corresponding Euler-Lagrange equation minimizer. _ o
Note thatP, <0, since the sequence of vanishing Gauss-
iv,+eav,,+eT X2)(|T(2)v|*T(2)v)=0. (1) ians

(1= —— p( TZ)
vi(7) = ——exp —
T amkin 4k

Now we turn to the averaged variational principle
+oo (1
y=e[ 7|
—e 0 satisfies the constraint ai{v,) —0 ask—o. This can be
with the corresponding averaged equation, previously de(-:h(:“(:kpfd by dire.ct calculations ysing the wgll known fac_t that
rived in [4], Gaugs!an functlons are self-similar solutions of the linear
Schralinger equation.
1 The idea, now, is to find a minimizing sequencg
iv,+eav,,+ Ef T Y2(T(2v|?T(2)v)dz=0. (2  [P(v)=\,E(v))— P,] such that,—v, which would be a
0 minimizer satisfying the Euler-Lagrange equation. First, we
[nust show that-<P, <0. The first part of the inequality
is required so that a hypothetical minimizer can satisfy the
Euler-Lagrange equation. The second inequalRy £ 0) is
necessary to avoid minimizing sequences converging to
=0, as in the above example.
o o By integrating an inequality of Sobolev type over
f lv(z,K)|?(1+k?)S<C if f lv(0k)|2(1+k?)S<C,

1
alv,|?- §|T(Z)v|4 drdz

The solutions of the averaged equation are close to the sol
tions of the original equation in the following sense. In the
interval O0<z=<Ce !, there exists a solution of the averaged
equation(2) that has an algebraic decay in Fourier space,

— oo

1/2

312
R . . f [T(2)v|*dr<s— J|TUT|2dT f|Tv|2d7')

wherev(z,k) is the Fourier transform aof (z, 7). V3

Furthermore, the solution(z,7) of the full equation(1), 1 U2 3
with the same initial data (0,7)=v(0,7), is close to the =_(f |vT|2dT) (f |v|2d7')
solution of the averaged equation, in the sense that V3

+oo - 1
f lv(z,k)—v(z,k)|*(1+k?)* °dk=Ce =ﬁ7\3’zp(v7)1’2,
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we obtain[8] +oo )
f [0(K,2) —v4(k,2)|*(1+k?)dk<Ce,
1 A3 -

E =P __)\SIZP 1/22__.
(v) (v) \/§ (v) 12 while z<Ce ™. Thus, we have shown that an initial pulse

with sufficiently fast decay in Fourier space and close to the
Using self-similar solutions of the linear equation corre-ground state of the averaged variational principle will stay
sponding to Gaussian pulses, we show by straightforwardearly periodic forz<Ce 1.
calculations(see the Appendixthat P, <0 for any A\>0.

Note that for any minimizing sequenég(vy) is bounded, IIl. GROUND STATES IN THE CASE OF ZERO
for otherwise E(vy) would have infinitely many positive AND NEGATIVE RESIDUAL DISPERSION
terms by the above inequality. _ .
Next’ we show that for any m|n|m|z|ng Sequenqgthere In the mean-zero average dISperSIOI’I case, one does not

exists a subsequeneg,_ and a real number,, such that €xpect ground states in the absence of variable dispersion.
m : : oo
W, (7)=v(7— 7.) converges to a pulselike periodic solution The main reason is unboundednes; of the Hamlltonlan fr_om
. ' S . . below. However, due to the smoothing properties of the lin-
v. First, applying Lions’ concentration compactness prin-

ciple (see the Appendix we find thatw,—v so that ear Schrdinger equation the Hamiltonian functional is
m . -
P(W,—0)—0 and P(u)=\ (the limit satisfies the con- bounded from below. Formally, this follows from the Stri

strainy. Since G(w,,)<cc there exists a subsequence alsoChartz estimate
denotedw,, weakly converging ta. 4o 4o

Following the well known procedurésee[9)) it is pos- f f lu(z,7)|8dz dr<C[P(u)]*?,
sible to show thatG(w,,—v)—0, which implies that the e
minimizer possesses a weak derivative. Since both function- . . - .
als(H)(v) andP(v) are of clasC? then, for some Lagrang- whereu(z,t) is the solution of the free Schilinger equation

ian multiplier o, the obtained minimizev weakly satisfies

the Euler-Lagrange equatid@) corresponding to the aver- luz+u,,=0.
aged variational principle, i.e., Indeed
1
-1 2 _ 1 [+
wv+eav .+ GJO T Y2 (T(2)v|*T(2)v)=0, JO fﬁ T(2)u[*dz dr

thus corresponding to a standing wave soluoff’? () of 1 [+

the averaged equatidg). <f j [IT(2)ul>+|T(2)u|®]dz dr
Using the classical bootstrapping argument, we obtain the 0=

result that the minimizer has superalgebraic decay in Fourier

1 [+ 1 [+
space, sf j |T(z)u|?dz d7-+f f |T(z)u|®dz dr
0 — 0 0 —®

oo
f 10(K)|2(1+k2)Sdk<C forany s, =P(u)+C[P()]",

where we have used the Strichartz estimate and the conser-
and thus it is smooth. Now we can construct a set of initialvation of power. Therefore the infimum in the constrained
data which behave nearly periodically. We take our initialminimization problem
data&(k,O) close to the ground state solution, which we will

denote byvg(k), PAZ{E(U)Z— folf+w|T(z)u|4Zsz,P(v)<oo,P(v)=)\}

+ oo
o - 2 2\4
f_w lvg(k) v(k[*(1+k%)*dk<Ce, is bounded from below. Numerous numerical simulations

showed that there exists a stable pulse in the mean-zero case.
and therefore, by the local existence theorem, the correAlthough we have not been able to establish the presence of
sponding solutionég(k,z) ando (k,z) of the averaged equa- @ ground stateit would require constructing a converging
tion (2) staye-close in the same norm. On the other hand, weSUbsequengewe show that the Hamiltonian functional can

can apply the averaging result to conclude that the solution@® Minimized over Gaussian pulses, giving a pulse profile
~ that exhibits stable behavior. Moreover, in the next section

v(k,2) ando(k,2) of the averaged2) and the originall) e yse the above smoothing effect to stabilize pulses in fo-

equations stay close for9z=Ce™*, cusing a NLS with critical nonlinearities.
o In the case of negative residual dispersion, one should
f |z3(k)—z3(k)|2(1+ k?)dk<Ce. observe |nstab|I|t_y QUe to the presence of the negative gradi-
— ent term. In[7] it is proved that the corresponding con-

strained variational problem cannot have local minima. Al-
Therefore, a solution initially close to a ground state will staythough in numerical experiments stable pulse propagation is
near it, observed, it appears to be due to the smallness of the nega-
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tive residual dispersion. Actually, if the value of residual As before, in the averaged evolution problem, the aver-
dispersion is decreased further, the stable pulse disappearsaged Hamiltonian as well as the power of the pulse is a
conserved quantity. Following the above procedure, we fix

IV. GROUND STATES IN CRITICAL CASES the power

bility of stabilization of a spatial pulse in a nonlinear Kerr

medium by introducing rapidly varying dispersion. This is

reminiscent of Kapitza's phenomenon of the stabilization ofand consider the minimization problem
the inverted pendulum by rapidly oscillating the piya0],

Using the above observations, we demonstrate the possi- oo (e
d P P(w)=f f |w|?dx dy

as in both cases the stationary states are unstable in the ab- E(P)=inf{E(w)=(H)(w),
sence of parametric excitation.

The pulse _gyolutlon is gpverned by the two-dimensional f f (|, W]+ |w[2)dx dy<cs,
nonlinear Schrdinger equation

iuz+V2u+|ul?u=0, P:f iwiZdx dy;
which is well known to have no stable puld€3. We modify

the dispersion coefficient by adding a rapidly varying term asThe detailed mathematical analysis of this problem is pre-
in the dispersion management regime, sented II‘[G] Here we provide the result: B is Iarger than a

certain thresholdP. then there is a pulse minimizing the

) 1 (ZV|_, ) averaged Hamiltonian.
iuz+| 1+ —d| - Viu+|ul*u=0. From the analytical point of view, such a pulse exists
because the averaged Hamiltonian is bounded from below
Rescaling the distancg= ez, we obtain [—<E(P)<0]. This is in contrast to the constant disper-
sion regime, where the above minimization problem assumes
iu,+d(z2)VZu+e(VZu+|ul?u)=0 (3)  either zero[ E(P)=0] or negative infinity[E(P)= —c],
either of which excludes the possibility of existence of stable
with the Hamiltonian ground states(Note the similarity with the mean-zero re-
sidual dispersion case in a one-dimensional NLS.
+oo (oo Informally speaking, such boundedness results from the
H(U)=f . J’ . (d(Z)|VLU|2 smoothing of the pulse by high local dispersion, which ar-

rests collapsein the averaged equatipmand creates favor-
1 able conditions for the existence of ground states. Formally,
—E<|V¢U|2—§|U|4)>dx dy. this stabilizing mechanism is again justified by the corre-
sponding Strichartz estimatg8]

Solving the leading order equation L i
f f f [ T(z)w|*dx dy dz=CP(w)><CP?,
iu,+d(z)V2u=0, 0J-xJ-u

Carrying out the same calculations, one can obtain averaged
ground states in a one-dimensional NLS with criti¢glin-
tic) nonlinearity

we use its solutions as the new variable(x,y)
=T(z2)w(X,y), where T(z)w(x,y) is the solution of the
above equation with initial pulse/(x,y). Carrying out this
transformation we obtain the equation for the slowly varying

field iuy+ u+alul?u+blul*u=0

1 /7
1+-d
€

€

iw,+ eV2w+ eQ(w,w,w,z)=0 With 8=0b>0.

Now we present some results of numerical simulations
that confirm the possibility of finding ground states in critical
e [ 1 NLS equations. We have simulated the original evolutionary
H(W)ZEJ f (|Vlw|2——|T(z)W|4)dx dy. equations(3) and (4) with a variable coefficientd(z) that
o J - 2 was chosen to bec1 onze[0,0.5] andze[0.5,1], respec-
tively, and withe=0.1.

with the Hamiltonian

Up to this point, we have made no approximations. We now  sjnce it is difficult to create ground states both numeri-
average the Hamiltonian over the fast scale cally and experimentally, we followed the approacti4hof
approximating ground states with Gaussian pulses. More
<H>(W):6f1f+°°f+°° IV, w|2— £|T(z)w|4)dx dy dz precisely, we found a Gaussian pulse that minimizes the av-
0J-wJ-w 2 eraged Hamiltonian, subject to the power constraint. An ap-
proximating Gaussian pulse takes the form(x,y)
The averaging result stated in the previous section applies ir A exp(?/o), whereA is a real amplitudeg is a complex
this situation as wel(see[7]). parameter, and is the Euclidean distance. Substituting this
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FIG. 1. Spatial dispersion-managed soliton tat0 and t FIG. 3. Dispersion-managed soliton in quintic NLStat0 and
=400(¢=0.1D(=0.5). t=800 (¢=0.1Dy=1).

function into the expression for the corresponding average@” averaged action functional. The corresponding solutions
Hamiltonian and using the power relation, after lengthy butof the original equation are constructed from the above
straightforward calculations, we obtain a function in onedround state and turn out to be nearly periodic for suffi-
complex variabler which must be minimized. The real am- Ciéntly long distanceswhile the averaging procedure re-
plitude A is then found from the power relation. mains valid. L _ _

The initial pulse profiles obtained in this way have been W€ also found an application of the dispersion-managed
used in numerical simulations. The simulations show thaf!iton phenomenon that is possible due to interpretation of
stabilization does take pladeee Figs. 1-% Indeed, aftet the phenomenon as a “dlspers“_/e’_’ §tab|.I|zat|on mechanism.
=400 an arbitrary pulse would at least double its wititr It can also be considered as an infinite-dimensional analog of

simulations confirm this taowhile specially prepared pulses Kapitza's effect of the stabilization of an inverted pendulum.

only slightly deform(Figs. 1 and 3 Amplitude oscillations Our theoretical predictions have been confirmed with nu-
(see Figs. 2 and)4also indicate that the pulse solutions aremencal simulations. This approach can also be used to in-

near the minimum of the Hamiltonian functional. The oscil- VeStigate the possibility of stabilizing pulses in other practi-

lations are due to the fact that no Gaussian pulse is exactly G Systems.
ground state and therefore the solution oscillates near the
ground state.

In conclusion, we have demonstrated the existence and Concentration compactness principle
stability of a periodic DM soliton. We have shown that the

averaged equation possesses a ground state that minimiz Here, we show that from any minimizing sequence of the
9 q P 9 &nstrained variational principle a converging subsequence

APPENDIX

lu (0)! ' ' ' lu (0)I
134 i
132 - 1
165
1.30 B
1.28 B
1.60
1.26 b
155 124 -
122 B
1.50 L ; 1 1.20 I 1 1
0.0 100.0 200.0 300.0 400-0t 0.0 200.0 400.0 600.0 800.0 ¢

FIG. 2. Amplitude variation of spatial dispersion-managed soli- FIG. 4. Amplitude variation of dispersion-managed soliton in
ton. quintic NLS.
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can be constructed. Although the proof of this result is quite=T(Z)u(0,7) is a solution of the linear Schdinger equation
technical, it seems to be at the heart of the phenomenon @fi,+u,.=0, which implies the following energy relation:
dispersion-managed solitons. The main difficulty is to show

that the solutions of the linear Scliinger equation cannot d [*R dr=2 duy R
spread out in finite time if the initial data were localized.  dz]_ |uk (r,2)|d7=21m u(r, 2 or (T 2)
Below, we provide a heuristic explanation of this result. R
It turns out that a minimizing sequenas, such that |ntegrating the above equation ovewe obtain
G(up,) is bounded andP(u,,) =\ must have a subsequence
Um, (which we will denote byu,) for which one of the fol- +R ) +R )
k. N |u(7,2p)|*d7— |ug(7,0)|°dr
lowing possibilities occurgll]. (1) It converges to a local- R R
ized pulseu [satisfyingP(u)=\] up to translations, i.e., R
G(wg—u)—0, wherew,(7) =ux(7— 7). (2) Itis vanishing, _ fz — Uy
i.e., sup cref ) 1|ul?d7—0. (3) It splits into two parts, i.e., 0 2Im u(7,2) Z7(7.2) 7Rdz.
for somey (0<y<\) and anye>0 there are two subse-
guencesv, and w, such thatP(u,—v—wy)<e, P(vy) But the left hand side can be estimated from
=7, P(w) =X —, and distsupp@ ), suppfvy))— . i
Our goal is to show that the second and third possibilities B 2
cannot occur. The main reason for that is the subadditivity of 2R+ Des f, |u(z, )| dx
the constraint minimization problerﬂ';’MﬂZ<PMvL Py
which can be verified by a scaling argument. This implies _ f+R|Uk(T,0)|2dT
that in order to maké&H)(u,)— P, the sequence should be -R
“tight.” Indeed, imagine thatu, splits as in(3), so that , Py +R
(H) (vt wi) =(H)(vi) +(H)(wy) with P(v,)=v and =f 2 imudz ) = (zr)| dz
P(w,)=\—1v. Then the properties of the infimum and the 0 JT _R
subadditivity condition suggest that
where
<H>(Uk+Wk)>P7+ P)\*7> P)\,
and therefore the infimum cannot be attained. €= Sup . |u?dr.
We first show that vanishing does not occur. By the defi- yer 7Y
lr;:ggkof the minimizing sequence, we have for Sumc'emlylntegrating this inequality oveR, we obtain
1+ Ro
f f [T(2)u|*drdz=c>0, fo [Co=2(RH1)e]dR
0 — o0
. . . +Ro (20 &Uk
which implies that for some, szj . fo |u(R,2)]| F(R'Z) dzdR
— o
—+ oo
f |T(zo)uy|*d7=c>0. where R, is the solution of the equationy—2(R+1)e,
*°° =0. Therefore
Applying the estimate obtained by Cazen9é
. —<2J J |u(R,2)| ’—(Rz) dzdR
+0 y+
f |u|4dr<C1 sup lul2d7G(u)?,
yERl - + (29 (7UK
szf J’ |u(R,2)] 07—(R,z) dzdR
—» JO T

to T(zg)u, we can conclude that

y+1 SZJ U
sup IT(zo)u?dr=cy, [[ul[L2(ry

yeRrt 7Y™

Un

s dz=Czgz,.

L2(R)

Taking k— so thate,— 0 we obtain a contradiction.

wherec, is independent ok. Now we assume that our se-  Simijlarly, we can show that splitting does not occur. In-
quence is vanishing and show that it leads to a contradictioryeed, if it did, then takingly, =vi+ Wi+ hy, whereh is

For definiteness, we assume tlyat0 (which corresponds to
centering the sequencandd(z)=1 on 0<z=<z,.! The sec-

ond assumption implies that for Oz<z;, u(z7) (H) (U ) =(H)(vi) + (H) (W) + Ry,
k

small, we obtain

where R, represents the terms that are vanishingeas0.

The general case wittl(z) having a finite number of nondegen- This can be shown by applying the above argument. There-
erate zeros can be reduced to the one we consider. fore using the subadditivity conditioR, ., <P, +P),,
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we obtain a contradiction, as explained above, with the fact
'[ha'[umk is a minimizing sequence.

1 (+w
Q<u>=J0 [ ool axar

Negativity of the infimum (0)]%o(1)] \/_ A A
We construct a familyu, satisfying the constraint N Re[a(t)]|3 2 2[Rda(D)]]  2[Re(op)]’

P(uy)=\ so that(H)(u,)<0. We start with a Gaussian

ansatz where we have used E¢A3) and the time independence of

Q for the solutions of the linear Schiimger equations. Fi-

2 o
u(x)=Ae", (A1) nally, using Eq(A3), we calculate

which turns out to be a self-similar solution of the linear

Schralinger equation
iU+ d(t)u,,=0. (A2)

Indeed, substituting EqA1) in Eq. (A2) we obtain

. A .
iA+d(t);=O, i20—2d(t)=0.
Solving this system of ordinary differential equations, we
obtain
u(x,t) = Ao\/‘r_o exz/z[ao—izo(t)],
Voo—i2D(t)

whereD(t)=d(t) andD(0)=0. Now we evaluate the aver-
aged functional and the constraint over the self-similar solu- ak

tions obtained,
+ oo
P(U)=J lu(x,t)|? dx

+ oo
:|A(t)|2f ex2 Re[a(t)]/lo.(t)|2dx

_AWPo] — |Adfool o
VIRG o ()] VR o)

where we have assumed that BRg(<0. After straightfor-
ward calculations, we also obtain

)|4ex22 Relo(01/|o(0)|? 4y dt

U dx dt=Jlj+w|A ¢

% 0J-=
|A(t)|4|0' \/—
0 V2[R ()]

flx/ Rd o ()] dt
lo(D)]

Now, we evaluate the averaged functional

dx dt

+o (1 1
= fo(a|ux|2—§|T<t>u|4

fl\/ Re[o(t) dt
2|Re(0'0)| 2\/_

e [, MReooP

- 2|Re(ay)| a\2w

dt
0 J[Re(ao>]2+[lm(ao>—2D<t>12]'

Now it is easy to see that for any fixed>0 and arbitrarily
small A we can take Im§y)=0 and sufficiently large
Re(oy) so that the averaged functional will become nega-
tive, (H)(u)<O0.
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