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Ground states of dispersion-managed nonlinear Schro¨dinger equation
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An exact pulse for the parametrically forced nonlinear Schro¨dinger equation~NLS! is isolated. The equation
governs wave envelope propagation in dispersion-managed fiber lines with positive residual dispersion. The
pulse is obtained as a ground state of an averaged variational principle associated with the equation governing
pulse dynamics. The solutions of the averaged and original equations are shown to stay close for a sufficiently
long time. A properly adjusted pulse will therefore exhibit nearly periodic behavior in the time interval of
validity of the averaging procedure. Furthermore, we show that periodic variation of dispersion can stabilize
spatial solitons in a Kerr medium and one-dimensional solitons in the NLS with quintic nonlinearity. The
results are confirmed by numerical simulations.

PACS number~s!: 42.65.Tg, 05.45.Yv
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I. INTRODUCTION

Recent technological advances in material science h
afforded considerable freedom in the design of optical ma
rials. In particular, an optical medium can be designed
have variable group velocity dispersion, nonlinearity, a
polarization @1#. All of these parameters can be varied
different scales by using appropriate manufacturing p
cesses. It is especially convenient to produce mater
systems having physical parameters varying periodically
this amounts to a repetitive manufacturing process. The e
lution equations guiding the propagation of electromagn
pulses ~or their envelopes! in such systems are nonlinea
evolution equations with periodically varying coefficient
Although such systems are frequently encountered in ap
cations, there are few general techniques for analyzing p
dynamics in parametrically forced systems.

The clearest realization of this technology can be found
the field of fiber-optic communication, namely, in the s
called dispersion-managed~DM! optical data transmission
that was proposed in 1980@2#. The simplest optical-pulse
equalizing system consists of a transmission fiber and
equalizer fiber with the opposite dispersion. The periodic
corporation of a compensating fiber reduces~or even elimi-
nates! the total dispersion of the fiber spans. In the line
regime, the compensation of dispersion aims to prevent
persive broadening of the pulse. In the nonlinear regime
additional advantage is that the impact of four-wave mix
on a signal transmission is substantially suppressed du

*Present address: Mathematical Sciences Research, Lucent
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the reduction of the efficiency of phase matching. The pr
tical achievements of this approach have stimulated furt
study of nonlinear dynamics in media with varying coef
cients.

In spite of the practical advances in the realization of su
systems, some basic features of a DM signal are not f
understood. In this article, we show the existence and sta
ity of the DM soliton in one important special case~positive
residual dispersion!. In the case of vanishing residual dispe
sion, we verify some nontrivial conditions for stability, on
of which is the boundedness from below of the Hamiltoni
functional. It turns out to be bounded entirely due to a sub
smoothing effect resulting from the variable dispersion p
rameter. Indeed, the large rapid variation of dispersion ma
the pulse undergo rapid oscillations, which smooth out
peaks that could cause instability.

Having understood and properly formulated this effe
which one might call dispersive smoothing, we then sh
that in some other systems of practical importance sta
ground states can be created.

II. DISPERSION-MANAGED SOLITON AS A GROUND
STATE OF THE AVERAGED VARIATIONAL

PRINCIPLE

We start from the wave envelope equation, derived fr
the Maxwell equations, guiding the propagation of elect
magnetic pulses in optical fibers. We show that the avera
equation possesses a ground state minimizing an aver
action functional. The corresponding solutions of the origin
equation are constructed from this ground state and turn
to be nearly periodic for sufficiently long times~while the
averaging procedure remains valid!.

After nondimensionalizing and rescaling in the strong d
ch-
7358 ©2000 The American Physical Society
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persion management regime the wave envelope propag
equation takes the form~see, e.g.,@3#!

iuz1d~z!utt1e~ uuu2u1autt!50,

whereu is the complex amplitude of the electric field,z is the
propagation distance,t is the retarded time,d(z11)5d(z)
is the mean-zero component of the group velocity dispers
and e^d& is the residual dispersion. Thee smallness of the
mean dispersion corresponds to the so-called nonweak
persion management regime. We first derive the slowly va
ing Hamiltonian and introduce the averaged Hamiltonian@4#.

The above equation possesses a Hamiltonian functi
similar to that of the nonlinear Schro¨dinger equation~NLS!
@4#

H5E
2`

1`Fd~z!uutu21eS auutu22
1

2
uuu4D Gdt.

Solving the unperturbed equation~with e50), we obtain
u(t,z)5T(z)u(t,0), whereT(z) is the fundamental solution
operator ofiuz1d(z)utt50.

The family of unitary operatorsT(z) is periodic T(z
11)5T(z) since^d(z)&50. Using the solution of the linea
system according to the method of variation of constants,
introduce a canonical transformationu(z,t)5T(z)v(z,t).
The new Hamiltonian takes the form

H5eE
2`

1`S auvtu22
1

2
uT~z!vu4Ddt

with the corresponding Euler-Lagrange equation

ivz1eavtt1eT21~z!„uT~z!vu2T~z!v…50. ~1!

Now we turn to the averaged variational principle

^H&5eE
2`

1`E
0

1S auvtu22
1

2
uT~z!vu4Ddtdz

with the corresponding averaged equation, previously
rived in @4#,

ivz1eavtt1eE
0

1

T21~z!„uT~z!vu2T~z!v…dz50. ~2!

The solutions of the averaged equation are close to the s
tions of the original equation in the following sense. In t
interval 0<z<Ce21, there exists a solution of the averag
equation~2! that has an algebraic decay in Fourier space

E
2`

1`

uv̂~z,k!u2~11k2!s<C if E
2`

1`

uv̂~0,k!u2~11k2!s<C,

wherev̂(z,k) is the Fourier transform ofv(z,t).
Furthermore, the solutionṽ(z,t) of the full equation~1!,

with the same initial dataṽ(0,t)5v(0,t), is close to the
solution of the averaged equation, in the sense that

E
2`

1`

uv̂~z,k!2 v̂̃~z,k!u2~11k2!s23dk<Ce
ion

n,
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-
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e

e-
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for 0<z<Ce21. Establishing these estimates requires
careful study of the averaging procedure developed in@5#,
and by one of the authors in@6#. The details of the averaging
procedure will appear elsewhere@7#.

Below we show that the averaged equation possess
family of ground state solutions, which together with th
averaging result verify the existence of nearly period
stable pulses.

It is easy to see that Eq.~2! is also phase invariant an
therefore has a conserved quantity

P~v !5E
2`

1`

uvu2 dt.

Introducing another useful functional corresponding to
Sobolev norm,

G~v !5E
2`

1`S uvu21U]v
]tU

2Ddt,

we consider the constrained minimization problem

Pl5 inf$E~v !5^H&~v !,G~v !,`,P~v !5l%.

If there is a solution of this problemu(x) then it corresponds
to a standing wave solution of the full averaged equation~2!.
AlthoughPl is bounded from below~as we will show later!,
it does not guarantee the presence of a minimizer as sim
examples show. Therefore, folowing the standard approa
we construct a minimizing sequence that converges t
minimizer.

Note thatPl<0, since the sequence of vanishing Gau
ians

vk~t!5
1

A4pk/l
expS 2

t2

4kD
satisfies the constraint andE(vk)→0 ask→`. This can be
checked by direct calculations using the well known fact t
Gaussian functions are self-similar solutions of the line
Schrödinger equation.

The idea, now, is to find a minimizing sequencevk

@P(v)5l,E(vk)→Pl# such thatvk→v, which would be a
minimizer satisfying the Euler-Lagrange equation. First,
must show that2`,Pl,0. The first part of the inequality
is required so that a hypothetical minimizer can satisfy
Euler-Lagrange equation. The second inequality (PlÞ0) is
necessary to avoid minimizing sequences converging tv
[0, as in the above example.

By integrating an inequality of Sobolev type overz,

E uT~z!vu4 dt<
1

A3
S E uTvtu2 dt D 1/2S E uTvu2 dt D 3/2

5
1

A3
S E uvtu2 dt D 1/2S E uvu2 dt D 3/2

5
1

A3
l3/2P~vt!

1/2,
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we obtain@8#

E~v !>P~vt!2
1

A3
l3/2P~vt!

1/2>2
l3

12
.

Using self-similar solutions of the linear equation corr
sponding to Gaussian pulses, we show by straightforw
calculations~see the Appendix! that Pl,0 for any l.0.
Note that for any minimizing sequenceG(vk) is bounded,
for otherwiseE(vk) would have infinitely many positive
terms by the above inequality.

Next, we show that for any minimizing sequencevk there
exists a subsequencevkm

and a real numbertm such that

wm(t)5v(t2tm) converges to a pulselike periodic solutio
v. First, applying Lions’ concentration compactness pr
ciple ~see the Appendix!, we find that wm→v so that
P(wm2v)→0 and P(v)5l ~the limit satisfies the con
straint!. Since G(wm),` there exists a subsequence a
denotedwm weakly converging tov.

Following the well known procedure~see@9#! it is pos-
sible to show thatG(wm2v)→0, which implies that the
minimizer possesses a weak derivative. Since both funct
als^H&(v) andP(v) are of classC1 then, for some Lagrang
ian multiplier v, the obtained minimizerv weakly satisfies
the Euler-Lagrange equation~2! corresponding to the aver
aged variational principle, i.e.,

vv1eavtt1eE
0

1

T21~z!„uT~z!vu2T~z!v…50,

thus corresponding to a standing wave solutione2 ivzv(t) of
the averaged equation~2!.

Using the classical bootstrapping argument, we obtain
result that the minimizer has superalgebraic decay in Fou
space,

E
2`

1`

uv̂~k!u2~11k2!s dk,C for any s,

and thus it is smooth. Now we can construct a set of ini
data which behave nearly periodically. We take our init
datav̂(k,0) close to the ground state solution, which we w
denote byvg(k),

E
2`

1`

uv̂g~k!2 v̂~k!u2~11k2!4 dk,Ce,

and therefore, by the local existence theorem, the co
sponding solutionsv̂g(k,z) andv̂(k,z) of the averaged equa
tion ~2! staye-close in the same norm. On the other hand,
can apply the averaging result to conclude that the solut

v̂(k,z) and ṽ̂(k,z) of the averaged~2! and the original~1!
equations stay close for 0<z<Ce21,

E
2`

1`

u ṽ̂~k!2 v̂~k!u2~11k2!dk,Ce.

Therefore, a solution initially close to a ground state will st
near it,
-
rd

-

n-

e
er

l
l

e-

e
s

E
2`

1`

u ṽ̂~k,z!2 v̂g~k,z!u2~11k2!dk,Ce,

while z<Ce21. Thus, we have shown that an initial puls
with sufficiently fast decay in Fourier space and close to
ground state of the averaged variational principle will st
nearly periodic forz<Ce21.

III. GROUND STATES IN THE CASE OF ZERO
AND NEGATIVE RESIDUAL DISPERSION

In the mean-zero average dispersion case, one does
expect ground states in the absence of variable dispers
The main reason is unboundedness of the Hamiltonian f
below. However, due to the smoothing properties of the
ear Schro¨dinger equation the Hamiltonian functional
bounded from below. Formally, this follows from the Str
chartz estimate

E
2`

1`E
2`

1`

uu~z,t!u6 dz dt<C@P~u!#1/3,

whereu(z,t) is the solution of the free Schro¨dinger equation

iuz1utt50.

Indeed,

E
0

1E
2`

1`

uT~z!uu4 dz dt

<E
0

1E
2`

1`

@ uT~z!uu21uT~z!uu6#dz dt

<E
0

1E
2`

1`

uT~z!uu2 dz dt1E
0

1E
2`

1`

uT~z!uu6 dz dt

<P~u!1C@P~u!#1/3,

where we have used the Strichartz estimate and the con
vation of power. Therefore the infimum in the constrain
minimization problem

Pl5H E~v !52E
0

1E
2`

1`

uT~z!uu4zt dz,P~v !,`,P~v !5lJ
is bounded from below. Numerous numerical simulatio
showed that there exists a stable pulse in the mean-zero
Although we have not been able to establish the presenc
a ground state~it would require constructing a convergin
subsequence!, we show that the Hamiltonian functional ca
be minimized over Gaussian pulses, giving a pulse pro
that exhibits stable behavior. Moreover, in the next sect
we use the above smoothing effect to stabilize pulses in
cusing a NLS with critical nonlinearities.

In the case of negative residual dispersion, one sho
observe instability due to the presence of the negative gr
ent term. In @7# it is proved that the corresponding con
strained variational problem cannot have local minima. A
though in numerical experiments stable pulse propagatio
observed, it appears to be due to the smallness of the n
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tive residual dispersion. Actually, if the value of residu
dispersion is decreased further, the stable pulse disappe

IV. GROUND STATES IN CRITICAL CASES

Using the above observations, we demonstrate the po
bility of stabilization of a spatial pulse in a nonlinear Ke
medium by introducing rapidly varying dispersion. This
reminiscent of Kapitza’s phenomenon of the stabilization
the inverted pendulum by rapidly oscillating the pivot@10#,
as in both cases the stationary states are unstable in th
sence of parametric excitation.

The pulse evolution is governed by the two-dimensio
nonlinear Schro¨dinger equation

iuZ1¹'
2 u1uuu2u50,

which is well known to have no stable pulses@9#. We modify
the dispersion coefficient by adding a rapidly varying term
in the dispersion management regime,

iuZ1F11
1

e
dS Z

e D G¹'
2 u1uuu2u50.

Rescaling the distanceZ5ez, we obtain

iuz1d~z!¹'
2 u1e~¹'

2 u1uuu2u!50 ~3!

with the Hamiltonian

H~u!5E
2`

1`E
2`

1`S d~z!u¹'uu2

2eS u¹'uu22
1

2
uuu4D Ddx dy.

Solving the leading order equation

iuz1d~z!¹'
2 u50,

we use its solutions as the new variableu(x,y)
5T(z)w(x,y), where T(z)w(x,y) is the solution of the
above equation with initial pulsew(x,y). Carrying out this
transformation we obtain the equation for the slowly varyi
field

iwz1e¹'
2 w1eQ~w,w,w,z!50

with the Hamiltonian

H~w!5eE
2`

1`E
2`

1`S u¹'wu22
1

2
uT~z!wu4Ddx dy.

Up to this point, we have made no approximations. We n
average the Hamiltonian over the fast scalez,

^H&~w!5eE
0

1E
2`

1`E
2`

1`S u¹'wu22
1

2
uT~z!wu4Ddx dy dz.

The averaging result stated in the previous section applie
this situation as well~see@7#!.
l
rs.

si-

f

ab-

l

s

in

As before, in the averaged evolution problem, the av
aged Hamiltonian as well as the power of the pulse is
conserved quantity. Following the above procedure, we
the power

P~w!5E
2`

1`E
2`

1`

uwu2dx dy

and consider the minimization problem

E~P!5 inf$E~w!5^H&~w!,

E E ~ u¹'wu21uwu2!dx dy,`,

P5E uwu2dx dy.

The detailed mathematical analysis of this problem is p
sented in@6#. Here we provide the result: ifP is larger than a
certain thresholdPcr then there is a pulse minimizing th
averaged Hamiltonian.

From the analytical point of view, such a pulse exis
because the averaged Hamiltonian is bounded from be
@2`,E(P),0#. This is in contrast to the constant dispe
sion regime, where the above minimization problem assum
either zero@E(P)50# or negative infinity@E(P)52`#,
either of which excludes the possibility of existence of sta
ground states.~Note the similarity with the mean-zero re
sidual dispersion case in a one-dimensional NLS.!

Informally speaking, such boundedness results from
smoothing of the pulse by high local dispersion, which
rests collapse~in the averaged equation! and creates favor-
able conditions for the existence of ground states. Forma
this stabilizing mechanism is again justified by the cor
sponding Strichartz estimates@9#

E
0

1E
2`

1`E
2`

1`

uT~z!wu4dx dy dz<CP~w!2<CP2.

Carrying out the same calculations, one can obtain avera
ground states in a one-dimensional NLS with critical~quin-
tic! nonlinearity

iuZ1F11
1

e
dS Z

e D Gu1auuu2u1buuu4u50

with a>0,b.0.
Now we present some results of numerical simulatio

that confirm the possibility of finding ground states in critic
NLS equations. We have simulated the original evolution
equations~3! and ~4! with a variable coefficientd(z) that
was chosen to be61 on zP@0,0.5# andzP@0.5,1#, respec-
tively, and withe50.1.

Since it is difficult to create ground states both nume
cally and experimentally, we followed the approach in@4# of
approximating ground states with Gaussian pulses. M
precisely, we found a Gaussian pulse that minimizes the
eraged Hamiltonian, subject to the power constraint. An
proximating Gaussian pulse takes the formw(x,y)
5A exp(r2/s), whereA is a real amplitude,s is a complex
parameter, andr is the Euclidean distance. Substituting th
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function into the expression for the corresponding avera
Hamiltonian and using the power relation, after lengthy b
straightforward calculations, we obtain a function in o
complex variables which must be minimized. The real am
plitude A is then found from the power relation.

The initial pulse profiles obtained in this way have be
used in numerical simulations. The simulations show t
stabilization does take place~see Figs. 1–4!. Indeed, aftert
5400 an arbitrary pulse would at least double its width~our
simulations confirm this too!, while specially prepared pulse
only slightly deform~Figs. 1 and 3!. Amplitude oscillations
~see Figs. 2 and 4! also indicate that the pulse solutions a
near the minimum of the Hamiltonian functional. The osc
lations are due to the fact that no Gaussian pulse is exac
ground state and therefore the solution oscillates near
ground state.

In conclusion, we have demonstrated the existence
stability of a periodic DM soliton. We have shown that th
averaged equation possesses a ground state that minim

FIG. 1. Spatial dispersion-managed soliton att50 and t
5400(e50.1,D050.5).

FIG. 2. Amplitude variation of spatial dispersion-managed s
ton.
d
t

t

a
he

nd

zes

an averaged action functional. The corresponding soluti
of the original equation are constructed from the abo
ground state and turn out to be nearly periodic for su
ciently long distances~while the averaging procedure re
mains valid!.

We also found an application of the dispersion-manag
soliton phenomenon that is possible due to interpretation
the phenomenon as a ‘‘dispersive’’ stabilization mechanis
It can also be considered as an infinite-dimensional analo
Kapitza’s effect of the stabilization of an inverted pendulu
Our theoretical predictions have been confirmed with n
merical simulations. This approach can also be used to
vestigate the possibility of stabilizing pulses in other prac
cal systems.

APPENDIX

Concentration compactness principle

Here, we show that from any minimizing sequence of t
constrained variational principle a converging subseque

-

FIG. 3. Dispersion-managed soliton in quintic NLS att50 and
t5800 (e50.1,D051).

FIG. 4. Amplitude variation of dispersion-managed soliton
quintic NLS.
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can be constructed. Although the proof of this result is qu
technical, it seems to be at the heart of the phenomeno
dispersion-managed solitons. The main difficulty is to sh
that the solutions of the linear Schro¨dinger equation canno
spread out in finite time if the initial data were localize
Below, we provide a heuristic explanation of this result.

It turns out that a minimizing sequenceum such that
G(um) is bounded andP(um)5l must have a subsequenc
umk

~which we will denote byuk) for which one of the fol-
lowing possibilities occurs@11#. ~1! It converges to a local-
ized pulseu @satisfyingP(u)5l] up to translationstk , i.e.,
G(wk2u)→0, wherewk(t)5uk(t2tk). ~2! It is vanishing,
i.e., supyPR1*y21

y11uuku2 dt→0. ~3! It splits into two parts, i.e.,
for someg (0,g,l) and anye.0 there are two subse
quencesvk and wk such thatP(uk2vk2wk),e, P(vk)
5g, P(wk)5l2g, and dist„supp(vk),supp(wk)…→`.

Our goal is to show that the second and third possibilit
cannot occur. The main reason for that is the subadditivity
the constraint minimization problem,Pl11l2

,Pl1
1Pl2

,
which can be verified by a scaling argument. This impl
that in order to makêH&(uk)→Pl the sequence should b
‘‘tight.’’ Indeed, imagine thatuk splits as in ~3!, so that
^H&(vk1wk)5^H&(vk)1^H&(wk) with P(vk)5g and
P(wk)5l2g. Then the properties of the infimum and th
subadditivity condition suggest that

^H&~vk1wk!.Pg1Pl2g.Pl ,

and therefore the infimum cannot be attained.
We first show that vanishing does not occur. By the de

nition of the minimizing sequence, we have for sufficien
largek

E
0

1E
2`

1`

uT~z!uku4dt dz>c.0,

which implies that for somez0

E
2`

1`

uT~z0!uku4 dt>c.0.

Applying the estimate obtained by Cazenave@9#,

E
2`

1`

uuu4 dt<C1 sup
yPR1

E
y21

y11

uuu2 dt G~u!2,

to T(z0)uk we can conclude that

sup
yPR1

E
y21

y11

uT~z0!uku2 dt>c0 ,

wherec0 is independent ofk. Now we assume that our se
quence is vanishing and show that it leads to a contradict
For definiteness, we assume thaty50 ~which corresponds to
centering the sequence! andd(z)51 on 0<z<z0.1 The sec-
ond assumption implies that for 0<z<z0 u(z,t)

1The general case withd(z) having a finite number of nondegen
erate zeros can be reduced to the one we consider.
e
of

s
f

s

-

n.

5T(z)u(0,t) is a solution of the linear Schro¨dinger equation
iuz1utt50, which implies the following energy relation:

d

dzE2R

1R

uuk~t,z!u2 dt52 ImF ūk~t,z!
]uk

]t
~t,z!G

2R

1R

.

Integrating the above equation overz we obtain

E
2R

1R

uuk~t,z0!u2 dt2E
2R

1R

uuk~t,0!u2 dt

5E
0

z0
2 ImF ūk~t,z!

]uk

]t
~t,z!G

2R

1R

dz.

But the left hand side can be estimated from

c022~R11!ek<E
2R

1R

uuk~z,t!u2 dx

2E
2R

1R

uuk~t,0!u2dt

5E
0

z0
2 ImF ūk~z,t!

]uk

]t
~z,t!G

2R

1R

dz

where

ek5 sup
yPR1

E
y21

y11

uuku2dt.

Integrating this inequality overR, we obtain

E
0

R0
@c022~R11!ek#dR

<2E
2R0

1R0E
0

z0
uuk~R,z!uU]uk

]t
~R,z!Udz dR,

where R0 is the solution of the equationc022(R11)ek
50. Therefore

C

ek
<2E

2R0

1R0E
0

z0
uuk~R,z!u U]uk

]t
~R,z!Udz dR

<2E
2`

1`E
0

z0
uuk~R,z!u U]uk

]t
~R,z!Udz dR

<2E
0

z0
uuukuuL2(R) I ]un

]t I
L2(R)

dz<Cz0 .

Taking k→` so thatek→0 we obtain a contradiction.
Similarly, we can show that splitting does not occur. I

deed, if it did, then takingumk
5vk1wk1hk , wherehk is

small, we obtain

^H&~umk
!5^H&~vk!1^H&~wk!1Rk ,

whereRk represents the terms that are vanishing ase→0.
This can be shown by applying the above argument. The
fore using the subadditivity conditionPl11l2

,Pl1
1Pl2

,
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we obtain a contradiction, as explained above, with the
that umk

is a minimizing sequence.

Negativity of the infimum

We construct a familyul satisfying the constrain
P(ul)5l so that ^H&(ul),0. We start with a Gaussia
ansatz

u~x!5Aex2/2s, ~A1!

which turns out to be a self-similar solution of the line
Schrödinger equation

iut1d~ t !uxx50. ~A2!

Indeed, substituting Eq.~A1! in Eq. ~A2! we obtain

iȦ1d~ t !
A

s
50, i2ṡ22d~ t !50.

Solving this system of ordinary differential equations, w
obtain

u~x,t !5
A0As0

As02 i2D~ t !
ex2/2[s02 i2D(t)] ,

whereḊ(t)5d(t) andD(0)50. Now we evaluate the aver
aged functional and the constraint over the self-similar so
tions obtained,

P~u!5E
2`

1`

uu~x,t !u2 dx

5uA~ t !u2E
2`

1`

ex2 Re[s(t)]/ us(t)u2 dx

5
uA~ t !u2us~ t !u

AuRe@s~ t !#u
Ap5

uA0u2us0u

AuRe@s~ t !#u
Ap, ~A3!

where we have assumed that Re(s0),0. After straightfor-
ward calculations, we also obtain
e

m

ct

-

Q~u!5E
0

1E
2`

1`

uux~x,t !u2 dx dt

5
uA~ t !u2us~ t !u

AuRe@s~ t !#u3
Ap

2
5

l

2uRe@s~ t !#u
5

l

2uRe~s0!u
,

where we have used Eq.~A3! and the time independence o
Q for the solutions of the linear Schro¨dinger equations. Fi-
nally, using Eq.~A3!, we calculate

E
0

1E
2`

1`

uTuu4 dx dt5E
0

1E
2`

1`

uA~ t !u4ex22 Re[s(t)]/ us(t)u2 dx dt

5E
0

1 uA~ t !u4us~ t !u

A2uRe@s~ t !#u
Ap dt

5
l2

A2p
E

0

1AuRe@s~ t !#u
us~ t !u

dt.

Now, we evaluate the averaged functional

^H&~u!5E
2`

1`E
0

1S auuxu22
1

2
uT~ t !uu4Ddx dt

5
al

2uRe~s0!u
2

l2

2A2p
E

0

1AuRe@s~ t !#u
us~ t !u

dt

5
la

2uRe~s0!u F12
lAuRe~s0!u3

aA2p

3E
0

1 dt

A@Re~s0!#21@ Im~s0!22D~ t !#2G .

Now it is easy to see that for any fixeda.0 and arbitrarily
small l we can take Im(s0)50 and sufficiently large
Re(s0) so that the averaged functional will become neg
tive, ^H&(u),0.
y,

de
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